FBIA Off, Set to Publish Automatically, 2

Rock or stone is a natural substance, a solid aggregate of one or more minerals or mineraloids. For example, granite, a common rock, is a combination of the minerals quartz, feldspar and biotite. The Earth’s outer solid layer, the lithosphere, is made of rock.

Rock has been used by mankind throughout history. The minerals and metals found in rocks have been essential to human civilization.[1]

Three major groups of rocks are defined: igneous, sedimentary, and metamorphic. The scientific study of rocks is called petrology, which is an essential component of geology.

At a granular level, rocks are composed of grains of minerals, which, in turn, are homogeneous solids formed from a chemical compound that is arranged in an orderly manner. The aggregate minerals forming the rock are held together by chemical bonds. The types and abundance of minerals in a rock are determined by the manner in which the rock was formed. Many rocks contain silica (SiO2); a compound of silicon and oxygen that forms 74.3% of the Earth’s crust. This material forms crystals with other compounds in the rock. The proportion of silica in rocks and minerals is a major factor in determining their name and properties.[2]

Rocks are geologically classified according to characteristics such as mineral and chemical composition, permeability, the texture of the constituent particles, and particle size. These physical properties are the end result of the processes that formed the rocks.[3] Over the course of time, rocks can transform from one type into another, as described by the geological model called the rock cycle. These events produce three general classes of rock: igneous, sedimentary, and metamorphic.

The three classes of rocks are subdivided into many groups. However, there are no hard and fast boundaries between allied rocks. By increase or decrease in the proportions of their constituent minerals they pass by every gradation into one another, the distinctive structures also of one kind of rock may often be traced gradually merging into those of another. Hence the definitions adopted in establishing rock nomenclature merely correspond to more or less arbitrary selected points in a continuously graduated series.[4]

Igneous rock
Main article: Igneous rock

Sample of igneous gabbro
Igneous rock (derived from the Latin word igneus meaning of fire, from ignis meaning fire) forms through the cooling and solidification of magma or lava. This magma can be derived from partial melts of pre-existing rocks in either a planet’s mantle or crust. Typically, the melting of rocks is caused by one or more of three processes: an increase in temperature, a decrease in pressure, or a change in composition.

Igneous rocks are divided into two main categories: plutonic rock and volcanic. Plutonic or intrusive rocks result when magma cools and crystallizes slowly within the Earth’s crust. A common example of this type is granite. Volcanic or extrusive rocks result from magma reaching the surface either as lava or fragmental ejecta, forming minerals such as pumice or basalt.[3] The chemical abundance and the rate of cooling of magma typically forms a sequence known as Bowen’s reaction series. Most major igneous rocks are found along this scale.[2]

About 64.7% of the Earth’s crust by volume consists of igneous rocks; making it the most plentiful category. Of these, 66% are basalts and gabbros, 16% are granite, and 17% granodiorites and diorites. Only 0.6% are syenites and 0.3% peridotites and dunites. The oceanic crust is 99% basalt, which is an igneous rock of mafic composition. Granites and similar rocks, known as meta-granitoids, form much of the continental crust.[5] Over 700 types of igneous rocks have been described, most of them having formed beneath the surface of Earth’s crust. These have diverse properties, depending on their composition and the temperature and pressure conditions in which they were formed.

Sedimentary rock
Main article: Sedimentary rock

Sedimentary sandstone with iron oxide bands
Sedimentary rocks are formed at the earth’s surface by the accumulation and cementation of fragments of earlier rocks, minerals, and organisms[6] or as chemical precipitates and organic growths in water (sedimentation). This process causes clastic sediments (pieces of rock) or organic particles (detritus) to settle and accumulate, or for minerals to chemically precipitate (evaporite) from a solution. The particulate matter then undergoes compaction and cementation at moderate temperatures and pressures (diagenesis).

Before being deposited, sediments are formed by weathering of earlier rocks by erosion in a source area and then transported to the place of deposition by water, wind, ice, mass movement or glaciers (agents of denudation). Mud rocks comprise 65% (mudstone, shale and siltstone); sandstones 20 to 25% and carbonate rocks 10 to 15% (limestone and dolostone).[3] About 7.9% of the crust by volume is composed of sedimentary rocks, with 82% of those being shales, while the remainder consists of limestone (6%), sandstone and arkoses (12%).[5] Sedimentary rocks often contain fossils. Sedimentary rocks form under the influence of gravity and typically are deposited in horizontal or near horizontal layers or strata and may be referred to as stratified rocks. A small fraction of sedimentary rocks deposited on steep slopes will show cross bedding where one layer stops abruptly along an interface where another layer eroded the first as it was laid atop the first.

Metamorphic rock
Main article: Metamorphic rock

Metamorphic banded gneiss
Metamorphic rocks are formed by subjecting any rock type—sedimentary rock, igneous rock or another older metamorphic rock—to different temperature and pressure conditions than those in which the original rock was formed. This process is called metamorphism; meaning to “change in form”. The result is a profound change in physical properties and chemistry of the stone. The original rock, known as the protolith, transforms into other mineral types or other forms of the same minerals, by recrystallization.[3] The temperatures and pressures required for this process are always higher than those found at the Earth’s surface: temperatures greater than 150 to 200 °C and pressures of 1500 bars.[7] Metamorphic rocks compose 27.4% of the crust by volume.[5]

The three major classes of metamorphic rock are based upon the formation mechanism. An intrusion of magma that heats the surrounding rock causes contact metamorphism—a temperature-dominated transformation. Pressure metamorphism occurs when sediments are buried deep under the ground; pressure is dominant, and temperature plays a smaller role. This is termed burial metamorphism, and it can result in rocks such as jade. Where both heat and pressure play a role, the mechanism is termed regional metamorphism. This is typically found in mountain-building regions.[2]

Depending on the structure, metamorphic rocks are divided into two general categories. Those that possess a texture are referred to as foliated; the remainders are termed non-foliated. The name of the rock is then determined based on the types of minerals present. Schists are foliated rocks that are primarily composed of lamellar minerals such as micas. A gneiss has visible bands of differing lightness, with a common example being the granite gneiss. Other varieties of foliated rock include slates, phyllites, and mylonite. Familiar examples of non-foliated metamorphic rocks include marble, soapstone, and serpentine. This branch contains quartzite—a metamorphosed form of sandstone—and hornfels.[2]

9 thoughts on “FBIA Off, Set to Publish Automatically, 2”

  1. Thanks for one’s marvelous posting! I seriously
    enjoyed reading it, you’re a great author.

    I will be sure to bookmark your blog and definitely will come back at some point.
    I want to encourage one to continue your great job, have a nice day!

  2. I think this is among the most important information for me.
    And i am glad reading your article. But should
    remark on few general things, The web site style is ideal, the
    articles is really nice : D. Good job, cheers

  3. I feel that is one of the so much significant information for me.
    And i’m satisfied studying your article. But wanna remark on few general things, The website taste is
    wonderful, the articles is in point of fact excellent :
    D. Excellent process, cheers

  4. でもMicrosoftからはWindows7プロダクトキーの新規販売はしてません。 土手を歩いていると、土手の下にある家の方から声がかかった。 [url=http://blog.goo.ne.jp/keywins]win 10 インストール[/url]
    昨日も新聞広告一面を使ってお詫びと無料UPは29日までですと掲載されました。 購入前にお試し,私たちの試験の質問と回答のいずれかの無料サンプルをダウンロード:http://www.japancert.com/70-489J.htmlNO.1 あなたは、 従業員 が自分の表示名を変更することができるようにする必要があります。
    [url=http://blog.goo.ne.jp/win8key]windows 8.1 アップグレード[/url] 先ほど、エコポイント対象のインナーサッシ工事を完了してきました。 また,Microsoftは同イベントで,立体映像を投影可能なWindows 10対応の拡張現実型HMD「Microsoft HoloLens」(以下,HoloLens)も発表している。
    [url=http://blog.goo.ne.jp/buywin10]windows 10 ソフト[/url]
    アメリカでは、168,000のガソリンスタンドがあるが、10万人程の労働者が消えた。 再度いうが、そもそもマイクロソフトのWindows10のバージョンアップをめぐってこんな問題が多発するのは、WindowsというOSが有償であったからだ。 [url=http://blog.goo.ne.jp/salewin]windows 8.1 の インストール[/url]
    AppleはなぜOSの更新料を無料にできるのか、あるいは、するのか?それは単に、  Appleがハードも売っている会社で、  ハードとソフトが一体のビジネスだからだ、というのでは弱すぎる。 何が届くのかはお楽しみ〜〜。
    [url=http://blog.goo.ne.jp/officesale]office 2016 価格[/url] 「窓からドーーーーーン」からNECのヘルプサイト、セーフモードの立ち上げ方などなど。 購入前にお試し,私たちの試験の質問と回答のいずれかの無料サンプルをダウンロード:http://www.xhs1991.com/3002.html。
    [url=http://blog.livedoor.jp/off2016/]office2016 メディア 購入[/url]

  5. It is appropriate time to make a few plans for the longer term
    and it is time to be happy. I’ve read this post and
    if I may I desire to recommend you few interesting issues or advice.
    Maybe you can write next articles referring to this article.
    I desire to learn more things about it!

Leave a Reply

Your email address will not be published. Required fields are marked *